Flat countersunk square neck bolts with short square Senkschrauben mit niedrigem Vierkantansatz Supersedes 11.70 edition As it is current practice in standards published by the International Organization for Standardization (ISO), the comma has been used throughout as a decimal marker. #### Dimensions in mm ## 1 Field of application This standard specifies flat countersunk square neck bolt with short square, with metric threads M 10 and M 12, of product grade C. ## 2 Dimensions, designation Designation of a flat countersunk square neck bolt with short square, with screw thread d=M 10, length l=50 mm and strength category 3.6 or 4.6 (at manufacturer's discretion): Flat countersunk bolt DIN 608 - M 10 \times 50 Continued on pages 2 to 4 | Screw thread d | | | N | M 10 | | M 12 | | |-----------------------|-------|-------|-------|---|-------|------------------|--| | P 1) | | | | 1,5 | | 1,75 | | | ь | | | 26 | 3 | 30 | | | | $d_{\mathbf{k}}$ | | max. | 19 | 19,65 | | 24,65 | | | | mln. | 18 | 18,35 | | 23,35 | | | | d _s 2) | | max. | 10 | | 12 | | | | | | min. | 9 | 9,42 | | 11,3 | | | f | | .max. | 8 | 8,45 | | 11,05 | | | | | min. | | 7,55 | | 9,95 | | | r 3) m | | | 1,5 | | 1,8 | | | | υ ²) max. | | 10,58 | | 12,7 | | | | | | | min. | 9,42 | | 11,3 | | | | | | | | Shank lengths $l_{ m s}$ and $l_{ m g}$ | | | | | | . 1 | | ls | $l_{\mathbf{g}}$ | l_s | $l_{\mathbf{g}}$ | | | Nominal size | min. | max. | min. | max. | min. | max. | | | 25 | 23,95 | 26,05 | _ | 16 | - | | | | 30 | 28,95 | 31,05 |] - | 16 | - | 20 | | | 35 | 33,75 | 36,25 | 1 - | 16 | - | 20 | | | 40 | 38,75 | 41,25 | _ | 16 | _ | 20 | | | 45 | 43,75 | 46,25 | 11,5 | 19 | _ | 20 | | | 50 | 48,75 | 51,25 | 16,5 | 24 | _ | 20 | | Lengths exceeding 50 mm must be graded by steps of 10 mm. Intermediate lengths should be avoided wherever possible. The shank diameter may also be ≈ pitch diameter at manufacturer's discretion If flat countersunk bolts according to this standard are to be supplied in strength category 3.6 or 4.6 with hexagon nuts of strength category 5 according to DIN 555, the symbol Mu must be added to the designation, e.g.: ### Flat countersunk bolt DIN 608 - M 10 × 50 - Mu DIN 962 specifies additional forms, types and details of order, as far as the said standard is applicable to flat countersunk bolts. ¹⁾ P =thread pitch ²⁾ For manufacturing reasons the + IT 15 tolerance is permissible for a shank without screw thread (including square). Therefore, the corresponding limiting dimension is given for v max. $^{^{3}}$) Radius r must be adhered to for a minimum length of 0,5 the square length below the head. ## 3 Technical delivery conditions | Material General requirements | | Steel | | | |------------------------------------|----------------------|--|--|--| | | | according to DIN 267 Part 1 | | | | Screw thread | tolerance | 8g | | | | | standard | DIN 13 Part 13 | | | | Mechanical properties | strength category 1) | 3.6 or 4.6 at manufacturer's discretion | | | | | standard | DIN ISO 898 Part 1 | | | | Permissible dimensional deviations | product grade | C (previous type g) | | | | | standard | DIN ISO 4759 Part 1 | | | | Surface | | DIN 267 Part 2 applies to the peak-to-valley heights of surfaces permissible surface defects according to DIN 267 Part 19 galvanic surface protection according to DIN 267 Part 9 hot-dip galvanizing according to DIN 267 Part 10 | | | | Acceptance testing | 4 | according to DIN 267 Part 5 | | | ¹⁾ If a specific strength category is required this must be indicated in the designation, e.g.: Flat countersunk bolt DIN 608 - M 10 \times 50 - 4.6 Other strength categories only on agreement. ## 4 Weights The weights listed are reference values. | Screw thread d | M 10 | M 12 | | |-----------------|---|------|--| | Length <i>l</i> | Weight (7,85 kg/dm³)
kg/1000 pieces≈ | | | | 25 | 18,2 | | | | 30 | 20,7 | 33,0 | | | 35 | 23,2 | 36,6 | | | 40 | 25,7 | 40,2 | | | 45 | 28,8 | 43,8 | | | 50 | 31,9 | 48,2 | | ### Standards referred to | DIN 13 Part 13 | ISO metric screw thread; review of screw threads for bolts and nuts from 1 to 52 mm thread diameter and limiting sizes | |---------------------|--| | DIN 267 Part 1 | Bolts, screws, nuts and similar threaded and formed parts; technical conditions of delivery; general information | | DIN 267 Part 2 | Bolts, screws, nuts and similar threaded and formed parts; technical conditions of delivery; type and dimensional accuracy | | DIN 267 Part 5 | Bolts, screws, nuts and similar threaded and formed parts; technical conditions of delivery; testing and accepting | | DIN 267 Part 9 | Mechanical fasteners; technical conditions of delivery; components with electroplated coatings | | DIN 267 Part 10 | Fasteners; technical conditions of delivery; hot-dip galvanized parts | | DIN 267 Part 19 | Fasteners; technical conditions of delivery; surface defects of screws | | DIN 555 | Hexagon nuts; metric thread, type g | | DIN 962 | Screws, bolts, studs and nuts; additional types and finishes; details of order and dimensions | | DIN ISO 272 | Fasteners, hexagon products, widths across flats | | DIN ISO 898 Part 1 | Mechanical properties of fasteners; bolts, screws and studs | | DIN ISO 4759 Part 1 | Tolerances for fasteners; bolts, screws and nuts with thread diameters between 1.6 (inclusive) are | 150 mm (inclusive) and product grades A, B and C ### Former editions DIN 567: 01.26, 04.36; DIN 567 Supplement: 10.26; DIN 608 Part 1: 01.41, 05.53, 03.63; DIN 608: 04.26, 07.36, 12.67, 11.70 ### **Amendments** Compared with the November 1970 edition the following amendments and additions have been made: - a) The "with hexagon nut according to DIN 555" type is no longer contained in the representation of the flat countersunk bolt. However, this type may still be ordered as part of this standard according to clause 2. - b) The dimensioning of the bolts was changed. The shank lengths $l_{\rm s}$ and $l_{\rm g}$ were adopted, $l_{\rm g}$ max. indicating at the same time the minimum grip of the bolts. The former screw thread length b is just a reference dimension for calculating $l_{\rm s}$ and $l_{\rm g}$. The difference between $l_{\rm s}$ min. and $l_{\rm g}$ max. is 5 × thread pitch, this value including the screw thread runout and the tolerances on length. In the case of shorter bolts $l_{\rm g}$ max. = f max. + 5 P, with $l_{\rm s}$ falling in this range, i.e. these bolts have a thread almost reaching the square. This new kind of dimensioning does not adversely affect interchangeability (new for old), because the screw thread length b, taken as a basis for calculating $l_{\rm s}$ and $l_{\rm g}$, was not changed. - c) The limits of the individual dimensions were adopted. They have regard to the tolerances according to DIN ISO 4759 Part 1, but this does not cause any significant changes as compared with the previous tolerances of DIN 267 Part 2. - d) New limiting dimensions resulting from DIN 267 Part 2 were specified for the square taking into account the permissible upsetting which corresponds to + IT 15 within a length of 2 d below head. The present specifications in DIN 267 Part 2 are not quite clear in this respect. - e) The bolt weights were specified separately, the previous weights being reduced by the weights of the nuts. - f) The strength categories refer to DIN ISO 898 Part 1. This standard supersedes DIN 267 Part 3. The strength categories 3.6 and 4.6 apply as usual. It is not intended to differentiate between 3.6 and 4.6, because this limit depends on the manufacturing process. - g) Details concerning the type were adapted to DIN ISO 4759 Part 1. This standard partly supersedes DIN 267 Part 2. It was not possible to completely dispense with DIN 267 Part 2 in favour of DIN ISO 4759 Part 1, because, e.g., the DIN ISO Standard does not contain any details on the surfaces (peak-to-valley heights). Apart from this, product grades A, B and C of DIN ISO 4759 Part 1 are practically identical with the previous types m, mg and g according to DIN 267 Part 2. Therefore, in this case, type g could be replaced easily by product grade C. - h) The previous "edges of square radiused" type was replaced by adopting a maximum value for the rounding radius.